Diagnosa Resiko Penyakit Jantung Menggunakan Logika Fuzzy Metode Tsukamoto

Authors

  • Ummi Athiyah Prodi Sains Data, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Sains Data, Fakultas Informatika, Institut Teknologi Telkom Purwokerto
  • Felia Citra Dwiyani Putri Rosyadi Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto
  • Reno Agil Saputra Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto
  • Hafidz Daffa Hekmatyar Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto
  • Tufail Akhmad Satrio Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto
  • Adam Ikbal Perdana Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto , Prodi Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto

DOI:

https://doi.org/10.47701/infokes.v11i1.1045

Keywords:

Heart disease, Expert System, Fuzzy Tsukamoto

Abstract

The heart is one of the most vital organs in the body and its a very important role for humans. Therefore, it is very important to pay attention to the risk of heart disease from an early age. This disease can be detected early with routine examinations. Based on WHO data (2011), heart disease is the number one cause of death in the world and at least 17.5 million or the equivalent of 30% of deaths worldwide are caused by heart disease. From these problems, the researchers created an expert system using the Fuzzy Tsukamoto method to diagnose the risk of heart disease. The benefit of this research is that it can help make it easier for the general public to check the level of risk for heart disease. The input from the system is blood sugar, cholesterol, blood pressure, and body mass index (BMI), while the output is a risk rating for heart disease with 3 categories, namely small, medium, and large. The stages of the fuzzy method Tsukamoto include fuzzification, formation of IF-THEN rules, inference engine, and finally defuzzification. From the application of the fuzzy Tsukamoto produces an expert system that can diagnose heart disease with three risk categories and based on 30 test data, an accuracy value of 83 percent is generated based on a comparison of the system results with expert results.

Downloads

Download data is not yet available.

Downloads

Published

2021-02-18

How to Cite

Diagnosa Resiko Penyakit Jantung Menggunakan Logika Fuzzy Metode Tsukamoto. (2021). Infokes: Jurnal Ilmiah Rekam Medis Dan Informatika Kesehatan, 11(1), 31-40. https://doi.org/10.47701/infokes.v11i1.1045