DETEKSI PENYAKIT DEMAM BERDARAH MELALUI PERANGKAT LUNAK BERBASIS TEKNOLOGI INFORMASI

Authors

  • Agung Suryadi Universitas Duta Bangsa Surakarta ,
  • Sri Wahyuningsih Nugraheni Prodi D3 Rekam Medis dan Informasi Kesehatan Universitas Duta Bangsa Surakarta ,

DOI:

https://doi.org/10.47701/infokes.v12i2.1903

Keywords:

DFH, Deteksi, teknologi Informasi

Abstract

According to the World Health Organitation (WHO), Dengue Hemorrhagic Fever (DHF) around the world has always increased drastically over the last 20 years. DHF is an infectious disease caused by the dengue virus which is transmitted through the bite of the Aedes Aegypti mosquito, characterized by a sudden high fever accompanied by bleeding manifestations and tends to cause shock and death. This disease is one of the most important public health problems in the world in general.

The accuracy of decision making from an identification of data in the world of health is very important for patients, because this will affect the patient's treatment services, then this will have an impact on the quality of service in the hospital. This technology has now become a fundamental requirement for the continuity of an organization. By applying information technology to assist clinicians in detecting dengue fever, it will provide convenience and speed in making the diagnosis of dengue fever effectively and efficiently.

Based on the information above, the hospital needs a system that can assist clinicians in making a diagnosis. Namely by implementing dengue fever detection software using an information technology-based system. By using a computerized dengue fever detection software that is developed, it will make it easier for a doctor to process and detect patient dengue fever disease data. In addition, with the developed application, it can be easily cooled down that all data will be stored in a database so that a doctor only needs to provide data input according to the needs of the analysis in the application, then the application will provide information in a timely manner so that it will have an impact on improving the quality of service to patients.

Downloads

Download data is not yet available.

References

Candra, A. Demam Berdarah Dengue: Epidemiologi, Patogenesis, dan Faktor Risiko Penularan. Aspirator. 2010; Vol. 2 No. 2: 110-119

Departemen Kesehatan R.I. (2005). Rencana Strategi Departemen Kesehatan. Jakarta: Depkes RI

Pusat Data dan Surveilans Epidemiologi Kementrian Kesehatan RI. Buletin Jendela Epidemiologi. 2010; Vol 2(Agustus): 1-31.

Sukowati, S. Masalah vektor demam berdarah dengue (DBD) dan pengendaliannya di Indonesia. Buletin Jendela Epidemiologi. 2010; Vol. 2(1): 26-30

Ananda, A. F., & Hidayatullah, M. T. Pemberantasan Sarang Nyamuk Berkorelasi Positif dengan Keberadaan Jentik di Kelurahan Bintaro Kota Mataram. Jurnal Sangkareang Mataram. 2015; Vol. 1(1): 54-58.

Ibnu Surya. Kebutuhan Perangkat Lunak Untuk Aplikasi Data Mining.Jurnal Nasional Teknologi Dan Sistem Informasi - VOL. 03 NO. 02 (2017) 233-240

Fanny Andalia. Pengembangan Sistem Informasi Pengolahan Datapencari Kerja Pada Dinas Sosial Dan Tenaga KeRJA KOTAPADANG. Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)93Vol. 4, No. 2, Oktober2015, ISSN :2089-9033

Suhendro, dkk. 2009. Demam Berdarah Dengue.dalam Buku Ilmu Penyakit Dalam. Badan Penerbit FKUI. Jakarta

Dewi, N. P., & Azam, M. Faktor-Faktor yang Berhubungan dengan Praktik PSN-DBD Keluarga di Kelurahan Mulyoharjo. Public Health Perspective Journal.2017; Vol. 2(1): 80-88.

Lasut, W. L., Kaunang, W. P., & Ratag, B. T. Faktor-faktor yang Berhubungan dengan Praktik Pemberantasan Sarang Nyamuk Demam Berdarah Dengue Masyarakat di Kelurahan Malalang I Kecamatan Malalang Kota Manado. 2017;Media Kesehatan, Vol. 9(3): 1-15.

Azizah & Faizah, 2010. Analisis Faktor Resiko Kejadian Demam Berdarah Dengue di Desa Mojosongo, Kabupaten Boyolali. Fakultas Ilmu Kesehatan Universitas Muhammadiyah Surakarta. Eksplanasi.Vol 5 (2):1-3.

DeLone, W. H., and Mclean, E. R. (2003). The DeLone McLean Model Of Information System Success: A ten-Year Update, Journal of Management Information, Vol. 19, No. 4: 9-30

Lia Farihul Mubin.2012. Prediksi Jumlah Kunjungan Pasien Rawat JalanMenggunakan Metode Genetic Fuzzy System: JURNAL TEKNIK ITS Vol. 1, No. 1

Satyareni, D.2011. Sistem pakar diagnosis penyakit infeksi tropis dengan menggunakan forward dan backward chaining. Jurnal Teknologi. Vol. 1 No. 2. Fakultas Teknik, Universitas Pesantren Tinggi Darul ‘Ulum’. Jombang.

Delia Putri Fardani. 2015. Sistem Pendukung Keputusan Peramalan Jumlah Kunjungan Pasien Menggunakan Metode Extreme Learning. Journal of Information Systems Engineering and Business Intelligence. Vol. 1, No. 1

Effendi, Muhammad Ridwan. (2016): Sistem Pendukung Keputusan Dalam Penentuan Biaya Rawat Inap Menggunakan Metode Activity Based Costing Pada Rumah Sakit Permata Beka : Jurnal Sistem Informasi Universitas Suryadarma. Vol 3, No 1.

Downloads

Published

2022-09-26

How to Cite

DETEKSI PENYAKIT DEMAM BERDARAH MELALUI PERANGKAT LUNAK BERBASIS TEKNOLOGI INFORMASI. (2022). Infokes: Jurnal Ilmiah Rekam Medis Dan Informatika Kesehatan, 12(2), 36-42. https://doi.org/10.47701/infokes.v12i2.1903