Development of an Image-Based Calorie Detection Model in Indonesian Food for Stunting Prevention

Authors

  • Devi Pramita Sari Universitas Duta Bangsa Surakarta
  • Sri Widodo Universitas Duta Bangsa Surakarta
  • Khoirul Mustofa Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.47701/6d407123

Keywords:

AI, CNN, Food Calorie Detection, Calories, Stunting

Abstract

Stunting is a global health problem, especially in developing countries including Indonesia. One of the main causes of stunting is malnutrition, especially in children aged 0-23 months. Therefore, this study aims to develop an AI-based model to detect calories in Indonesian food images for stunting prevention, using the Transfer Learning method with AlexNet. In this article, we propose a new deep learning-based food image calorie detection model called, Alexnet Interactive Transfer Learning (AITL). AITL is built based on Alexnet's Convolution Neural Network architecture, and further modified at the last Convolution layer and classification layer. AITL was evaluated using a dataset from the Indonesian food database. Experiments were conducted on the dataset to detect food types and their calorific content. There are ten classes of authentic Indonesian food types, which include: Rendang, Bika Ambon, Pempek, Sate Ayam, Gado-gado, Ayam Pop, Kerak Telor, Rawon, Lemang, and Ayam Betutu. The accuracy of the developed AITL model reached 95.33%. The results of the tests conducted show that Alexnet-based AITL outperforms other CNNs in terms of accuracy and efficiency.

References

Aklani, S. A., Studi, P., Informasi, S., Ilmu, F., Batam, U. I., Ladi, B., Indah, T., & Batam, K. (2023). 2365-Article Text-6353-1-10-20230225. 6(1), 48–58.

Al-Yasriy, H. F., Al-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2020). Diagnosis of Lung Cancer Based on CT Scans Using CNN. IOP Conference Series: Materials Science and Engineering, 928(2). https://doi.org/10.1088/1757-899X/928/2/022035

Eluis Bali Mawartika, Y., & Guntur, M. (2021). Application Expert System for Food Selection Based onNutritional Needs using Forward Chaining. Cogito Smart Journal |, 7(1), 96–110.

Fitriani, Barangkau, Masrah Hasan, Ruslang, Eka Hardianti, Khaeria, Resti Oktavia, & Selpiana. (2022). Cegah Stunting Itu Penting! Jurnal Pengabdian Kepada Masyarakat (JurDikMas) Sosiosaintifik, 4(2), 63–67. https://doi.org/10.54339/jurdikmas.v4i2.417

Humayun, M., Sujatha, R., Almuayqil, S. N., & Jhanjhi, N. Z. (2022). A Transfer Learning Approach with a Convolutional Neural Network for the Classification of Lung Carcinoma. Healthcare (Switzerland), 10(6), 1–15. https://doi.org/10.3390/healthcare10061058

Husaini, A., Hoeronis, I., Lumana, H. H., & Puspareni, L. D. (2023). Early Detection of Stunting in Toddlers Based on Ensemble Machine Learning in Purbaratu Tasikmalaya. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(3), 487. https://doi.org/10.26418/justin.v11i3.66465

Muhammad Rizqi Zamzami, Dahnial, S., & Fitriyah, H. (2021). Sistem Identifikasi Jenis Makanan dan Perhitungan Kalori berdasarkan Warna HSV dan Sensor Loadcell menggunakan Metode K-NN berbasis. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(3), 936–942.

Pokhrel, S. (2024). No TitleΕΛΕΝΗ. Αγαη, 15(1), 37–48.

Selviyanti, E., Roziqin, M. C., Putra, D. S. H., & Noor, M. S. (2022). Intelligent Application of Stunting Monitoring and Mapping Systems (Smart Ting) in Toddlers Based on Android in Jember. Proceedings of the 2nd International Conference on Social Science, Humanity and Public Health (ICOSHIP 2021), 645(Icoship 2021), 147–157. https://doi.org/10.2991/assehr.k.220207.024

Setiawan, E., Machmud, R., & Masrul, M. (2018). Faktor-Faktor yang Berhubungan dengan Kejadian Stunting pada Anak Usia 24-59 Bulan di Wilayah Kerja Puskesmas Andalas Kecamatan Padang Timur Kota Padang Tahun 2018. Jurnal Kesehatan Andalas, 7(2), 275. https://doi.org/10.25077/jka.v7i2.813

Downloads

Published

2025-09-25