PENGEMBANGKAN MODEL EKSTRAKSI REGION OF INTEREST SECARA OTOMATIS PADA CITRA CT-SCAN
DOI:
https://doi.org/10.47701/sikenas.vi.2871Keywords:
ASM, CNN, MorfologiAbstract
Kanker paru adalah pertumbuhan sel kanker yang tidak terkendali dalam jaringan paru. Akhir-akhir ini banyak peneliti yang telah menerapkan deep learning, khususnya Convolution Neural Network (CNN) untuk klasifikasi kanker paru. Proses deteksi kanker paru didahului dengan tahapan ekstraksi Region Of Interest (ROI). Ekstraksi ROI dalam deteksi kanker paru terdiri dari dua kegiatan, yaitu segmentasi bidang paru dan operasi segmentasi kandidat kanker paru. Sebagian besar penelitian tentang deteksi kanker menggunakan CNN, proses ekstraksi ROI dilakukan secara manual dengan melakukan kroping. Proses ini sulit dilakukan, khususnya dalam mensegmentasi bidang paru, yaitu memisahkan area paru dengan jaringan di sekitarnya. Jika kelainan tersebut besar dan terletak pada batas tepi paru, menyebabkan batas tepi paru tidak jelas, sehingga jika dilakukan segmentasi, citra yang dicurigai sebagai kanker tidak akan masuk dalam citra paru (bagian paru yang terdapat kanker akan hilang). Sehingga segmentasi bidang paru dianggap gagal. Penelitian yang diusulkan bertujuan untuk mengembangkan model ekstraksi Region Of Interest (ROI) secara otomatis menggunakan metode Active Shape Model dan Mathematical Morphology pada citra CT-Scan. Penelitian yang diusulkan terdiri dari dua tahapan, yaitu, segmentasi bidang paru menggunakan metode Active Shape Model (ASM) dan segmentasi kandidat paru menggunakan metode Mathematical Morphology. Hasil segmentasi paru dengan metode Active Shape Model mempunyai akurasi 97,2.8%, sensitifitas 96%, dan spesifisitas 97.4%. Sedangkan hasil segmentasi kandidat kanker paru dengan metode marfologi mempunyai akurasi 99,4%, sensitifitas 96,2%, dan spesifisitas 99.7%.
References
A.Gajdhane, M. V., & L.M, P. D. (2014). Detection of Lung Cancer Stages on CT scan Images by Using Various Image Processing Techniques. IOSR Journal of Computer Engineering, 16(5), 28–35. https://doi.org/10.9790/0661-16532835.
Adams, T., Dörpinghaus, J., Jacobs, M., & Steinhage, V. (2018). Automated lung tumor detection and diagnosis in CT Scans using texture feature analysis and SVM. Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, 17, 13–20. https://doi.org/10.15439/2018f176.
Al-taraweeh, M. S., Al-habashneh, S., Shaker, N., Tarawneh, W., & Tarawneh, S. (2014). Lung Cancer Detection using. 3(7), 1794–1798. https://doi.org/10.15662/IJAREEIE.2019.0802011.
American Lung Association. (2018). State of Lung Cancer. https://www.lung.org/our-initiatives/research/monitoring-trends-in-lung-disease/state-of-lung-cancer/
Ankita, R., Kumari, C. U., Mehdi, M. J., Tejashwini, N., & Pavani, T. (2019). Lung cancer image-feature extraction and classification using GLCM and SVM classifier. International Journal of Innovative Technology and Exploring Engineering, 8(11), 2211–2215. https://doi.org/10.35940/ijitee.K2044.0981119.
Asuntha, A., Brindha, A., Indirani, S., & Srinivasan, A. (2016). Lung cancer detection using SVM algorithm and optimization techniques. Journal of Chemical and Pharmaceutical Sciences, 9(4), 3198–3203.
Chen, F., Chen, P., Muhammed, H. H., & Zhang, J. (2017). Intravoxel Incoherent Motion Diffusion for Identification of Breast Malignant and Benign Tumors Using Chemometrics. BioMed Research International, 2017.
Colakoglu, B., Alis, D., & Yergin, M. (2019). Diagnostic Value of Machine Learning- Based Quantitative Texture Analysis in Differentiating Benign and Malignant Thyroid Nodules. Journal of Oncology, 2019. https://doi.org/10.1155/2019/6328329.
Cootes, T. F., Edwards, G., & Taylor, C. J. (2013). Comparing Active Shape Models with Active Appearance Models. January 1999, 18.1-18.10. https://doi.org/10.5244/c.13.18.
Dappa, E., Higashigaito, K., Fornaro, J., Leschka, S., Wildermuth, S., & Alkadhi, H. (2016). Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights into Imaging, 7(6), 849–856. https://doi.org/10.1007/s13244-016-0518-1
Gao, X., Su, Y., Li, X., & Tao, D. (2010). A review of active appearance models. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 40(2), 145–158. https://doi.org/10.1109/TSMCC.2009.2035631
Halmos, B., Tan, E. H., Soo, R. A., Cadranel, J., Lee, M. K., Foucher, P., Hsia, T. C., Hochmair, M., Griesinger, F., Hida, T., Kim, E., Melosky, B., Märten, A., & Carcereny, 2019). Impact of afatinib dose modification on safety and effectiveness in patients with EGFR mutation-positive advanced NSCLC: Results from a global real-world study (RealGiDo). Lung Cancer, 127(September 2018), 103–111. https://doi.org/10.1016/j.lungcan.2018.10.028.
Hasan Abdulameer, M., A. Mohammed, D., Farhan Rashag, H., & D. Rjeib, H. (2016). A Review Article for Active Appearance Model Fitting Based on Optimization Methods. Research Journal of Applied Sciences, Engineering and Technology, 12(10), 1057–1063. https://doi.org/10.19026/rjaset.12.2825
Jeya, I. J. S., & Deepa, S. N. (2016). Lung cancer classification employing proposed real coded genetic algorithm based radial basis function neural network classifier. Computational and Mathematical Methods in Medicine, 2016.
https://doi.org/10.1155/2016/7493535
Jonker, P. P. (2000). Morphological operations on 3D and 4D images: From shape primitive detection to skeletonization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1953 LNCS(March 2001), 371–391. https://doi.org/10.1007/3-540-44438-6_31
Karargyris, A., Siegelman, J., Tzortzis, D., Jaeger, S., Candemir, S., Xue, Z., Santosh, K. C., Vajda, S., Antani, S., Folio, L., & Thoma, G. R. (2016). Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. International Journal of Computer Assisted Radiology and Surgery, 11(1), 99–106. https://doi.org/10.1007/s11548-015-1242-x
Kaufman, A., & Mueller, K. (2005). Overview of volume rendering. Visualization Handbook, December,127–174.
https://doi.org/10.1016/B978-012387582-2/50009-5
Kumar, R., Srivastava, R., & Srivastava, S. (2015). Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features. Journal of Medical Engineering, 2015, 1–14. https://doi.org/10.1155/2015/457906
Kustanto, Widodo, S., & Tomo. (2015). Software Development To Detect Lung Nodules in Computed Tomography Scan Image Using Support Vector Machine. International Research Journal of Engineering and Technology (IRJET), 02(06), 354–360. www.irjet.net
Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung Cancer Detection using CT Scan Images. Procedia Computer Science, 125(2009), 107– 114. https://doi.org/10.1016/j.procs.2017.12.016
Niknam, F., Chen, J., Napaki, S., & Aghmesheh, M. (2011). Approach to multiple pulmonary nodules: A case report and review of literature. TheScientificWorldJournal, 11, 760–765. https://doi.org/10.1100/tsw.2011.74
Patil, B. G., & Jain, S. N. (2014). Cancer Cells Detection Using Digital Image Processing Methods. International Journal of Latest Trends in Engineering and Technology, 3(4), 45–49.
Sharma, D., & Jindal, G. (2011). Identifying Lung Cancer Using Image Processing Techniques. International Conference on Computational Technique and Artificial Intelligence, 115–120.
Song, Q. Z., Zhao, L., Luo, X. K., & Dou, X. C. (2017). Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. Journal of Healthcare Engineering, 2017. https://doi.org/10.1155/2017/8314740
Thompson, J. C., Fan, R., Black, T., Yu, G. H., Savitch, S. L., Chien, A., Yee, S. S., Sen, M., Hwang, W. T., Katz, S. I., Feldman, M., Vachani, A., & Carpenter, E. L. (2019). Measurement and immunophenotyping of pleural fluid EpCAM-positive cells and clusters for the management of non-small cell lung cancer patients. Lung Cancer, 127(August 2018), 25–33. https://doi.org/10.1016/j.lungcan.2018.11.020
Tian, Y., Shi, Y., & Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18(1), 5–33. https://doi.org/10.3846/20294913.2012.661205
Tran, G. S., Nghiem, T. P., Nguyen, V. T., Luong, C. M., Burie, J. C., & Levin- Schwartz, Y. (2019). Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. Journal of Healthcare Engineering, 2019. https://doi.org/10.1155/2019/5156416
Widodo, S., Rohmah, R. N., & Handaga, B. (2018). Classification of lung nodules and arteries in computed tomography scan image using principle component analysis. Proceedings - 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2017, 2018-Januari, 153–158. https://doi.org/10.1109/ICITISEE.2017.8285485
Widodo, S., Rohmah, R. N., Handaga, B., & Arini, L. D. D. (2019). Lung diseases detection caused by smoking using support vector machine. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1256–1266. https://doi.org/10.12928/TELKOMNIKA.V17I3.9799
Widodo, S., & Wijiyanto. (2014). Software development for three dimensional visualization of lung on computed tomography scans using active shape model and volume rendering. Journal of Theoretical and Applied Information Technology, 65(1), 154–160.
Zhou, T., Lu, H., Zhang, J., & Shi, H. (2016). Pulmonary nodule detection model based on SVM and CT image feature-level fusion with rough sets. BioMed Research International, 2016. https://doi.org/10.1155/2016/8052436
Zhang, Z. (2016). Derivation of Backpropagation in Convolutional Neural Network (CNN). Tennessee : University of Tennessee.