Sistem Pendukung Keputusan Klinis Untuk Pemetaan Penyakit Cardiovascular Dengan Algoritma Clustering K-Means

Authors

  • Wiji Lestari Universitas Duta Bangsa Surakarta
  • Sri Sumarlinda Universitas Duta Bangsa Surakarta

Keywords:

tekanan darah, detak jantung, system pendukung keputusan klinis, clustering, algortima K-Means

Abstract

Deteksi awal dan pemetaan penyakit cardiovascular berperan penting dalam ketatalaksanaan kesehatan. Penelitian ini bertujuan untuk mengembangkan model sistem pendukung keputusan klinis (Clinical Decision Support System) yang non rule based system. Model ini berbasiskan data dengan menggunakan fungsi data mining clustering. Algoritma K-Means digunakan untuk melakukan clustering pada 120 data dan 4 atribut yaitu usia, obesitas, tekanan darah sistolik, tekanan darah diastolik dan detak jantung. Proses clustering menggunakan 500 epoch dan 3 cluster. Hasil clustering menunjukkan  klaster 1 risikonya lebih tinggi, klaster 2 risikonya sedang, dan klaster 3 risikonya normal atau lebih rendah.

References

M. Pulido and P. Melin, “Blood Pressure Classification Using the Method of the Modular Neural Networks,” Int. J. Hypertens., vol. 2019, 2019.

B. R. Olin and D. Pharm, “Hypertension?: The Silent Killer?: Updated JNC-8 Guideline Recommendations,” 2018.

Y. Yano et al., “Association of Blood Pressure Classification in Young Adults Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline With Cardiovascular Events Later in Life,” American Medical Association, vol. 27705, no. 17, pp. 1774–1782, 2018, doi: 10.1001/jama.2018.13551.

T. Minh and N. Minh, “Changes In Blood Pressure Classification , Blood Pressure Goals and Pharmacological Treatment Of Essential Hypertension In Medical Guidelines From 2003 To 2013 IJC Metabolic & Endocrine Changes in blood pressure classi fi cation , blood pressure goals and pharmacological treatment of essential hypertension in medical guidelines from 2003 to 2013,” IJCME, vol. 2, no. March 2014, pp. 1–10, 2015, doi: 10.1016/j.ijcme.2014.01.001.

K. Matsumura, P. Rolfe, S. Toda, and T. Yamakoshi, “Cuffless blood pressure estimation using only a smartphone,” Scientific Report, pp. 1–9, 2018, doi: 10.1038/s41598-018-25681-5.

G. Bacelar, R. Chen, and K. Institutet, “Transforming a High Blood Pressure Clinical Guideline into a CDSS - Difficulties in Understanding TRANSFORMING A HIGH BLOOD PRESSURE CLINICAL Difficulties in Understanding,” no. July 2017, 2012.

H. Koshimizu, R. Kojima, K. Kario, and Y. Okuno, “International Journal of Medical Informatics Prediction of blood pressure variability using deep neural networks,” Int. J. Med. Inform., vol. 136, no. October 2019, p. 104067, 2020, doi: 10.1016/j.ijmedinf.2019.104067.

I. Saini, D. Singh, and A. Khosla, “Classification of RR-Interval and Blood Pressure for Different Postures using KNN Algorithm,” vol. 5, no. 1, pp. 13–20, 2012.

D. Blowey, B. Falkner, and S. S. Gidding, “Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents,” vol. 140, no. 3, 2021.

T. K. J. Groenhof, F. W. Asselbergs, R. H. H. Groenwold, D. E. Grobbee, F. L. J. Visseren, and M. L. Bots, “The effect of computerized decision support systems on cardiovascular risk factors?: a systematic review and meta-analysis,” pp. 1–12, 2019.

R. T. Sutton, “An overview of clinical decision support systems?: bene fi ts , risks , and strategies for success,” npj Digit. Med., pp. 1–10, 2020, doi: 10.1038/s41746-020-0221-y.

S. Vuppala and C. B. Turer, “Clinical Decision Support for the Diagnosis and Management of Adult and Pediatric Hypertension,” 2020.

G. J. Njie et al., “Clinical Decision Support Systems and Prevention of Cardiovascular Disease,” vol. 49, no. 5, pp. 784–795, 2020.

L. Farrell, “Evaluation of a Computerized Clinical Decision Support System and EHR-Linked Registry to Improve the Management of Hypertension in a Community Health Center.”

R. Anchala, E. Di Angelantonio, D. Prabhakaran, and O. H. Franco, “Development and Validation of a Clinical and Computerised Decision Support System for Management of Hypertension ( DSS-HTN ) at a Primary Health Care ( PHC ) Setting,” vol. 8, no. 11, pp. 1–10, 2013, doi: 10.1371/journal.pone.0079638.

R. Anchala, S. Kaptoge, H. Pant, E. Di Angelantonio, O. H. Franco, D. Prabhakaran, "Evaluation of Effectiveness and Cost-Effectiveness of a Clinical Decision Support System in Managing Hypertension in Resource Constrained Primary Health Care Settings: Results From a Cluster Randomized Trial" J Am Heart Assoc. 2015;4: e001213 doi: 10.1161/JAHA.114.001213

W. Lestari and S. Sumarlinda, “Implementation of ArtificialL Neural Network for Clustering of Students Interesting in Computing Fields,” Int. J. MULTI Sci. I, vol. 1, no. 5, pp. 29–33, 2020.

W. Lestari and S. Sumarlinda, “Clustering Model of Lecturers Performa in Publication Using K-Means for Decision Support Data,” Int. J. MULTI Sci. Clust., vol. 1, no. 10, pp. 88–95, 2021.

Downloads

Published

2024-07-18