PENGEMBANGAN ALAT PENDETEKSI WARNA KAIN FABRIC BERBASIS JST (JARINGAN SYARAF TIRUAN) PADA DIVISI QUALITY INCOMING DI PT. GLOBALINDO INTIMATES
PENGEMBANGAN ALAT PENDETEKSI WARNA KAIN FABRIC BERBASIS JST (JARINGAN SYARAF TIRUAN) PADA DIVISI QUALITY INCOMING DI PT. GLOBALINDO INTIMATES
DOI:
https://doi.org/10.47701/sintech.v4i2.3986Keywords:
fabric quality incoming, artificial neural network, color detectionAbstract
This study develops a color reader for the incoming quality division of PT. Globalindo Intimates, ensuring the accuracy and consistency of fabric color. Using Artificial Neural Networks and Convolutional Neural Networks, this tool is designed to overcome the limitations of conventional methods, improve the efficiency and effectiveness of quality control, and meet company standards with high precision. Using the Backpropagation method, with the applied network architecture is a multilayer network that uses input with 3 neurons, 2 hidden layers with 5 output layers. Producing a prototype of a color reader.
Keywords : fabric quality incoming, artificial neural network, color detection
References
Iskandar, S., Putra, V. G. V., & Hermansyah, H. (2022). PREDIKSI END BREAKAGE BENANG KAPAS DI MESIN ROTOR SPINNING MENGGUNAKAN PENDEKATAN JARINGAN SARAF TIRUAN. EduFisika: Jurnal Pendidikan Fisika, 7(1), 72–87. https://doi.org/10.59052/edufisika.v7i1.19543
Restiawan, R., & Ula, D. M. (2023). PERAN TEKNOLOGI ARTIFICIAL INTELLIGENCE (AI) TERHADAP PERUBAHAN SOSIAL MASYARAKAT. Open Access, 2(2).
Romadhon, A. S., & Baihaqi, J. R. (2015). Prototipe Alat Pemilah Jeruk Nipis Menggunakan Sensor Warna TCS230. Jurnal Ilmiah Mikrotek, 1(4), 184– 190.
Trilaksono, B. (2022). Six-Sigma pada Industri Garmen di Era Industri 4.0.
