Intelligent Surveillance for Mask Regulation in Healthcare Using the YOLOv11 Algorithm

Authors

  • Afu Ichsan Pradana Universitas Duta Bangsa Surakarta
  • Harsanto Universitas Duta Bangsa Surakarta
  • Burhanuddin Bin Mohd Aboobaider Technical University of Malaysia Malacca image/svg+xml
  • Malika Harsanto Universitas Duta Bangsa Surakarta

DOI:

https://doi.org/10.47701/23mc9656

Keywords:

mask detection, YOLOv11, computer vision, healthcare facilities, health protocols

Abstract

The use of face masks in healthcare settings is a crucial measure in preventing the spread of infectious diseases, particularly since the outbreak of the COVID-19 pandemic. However, public compliance with mask-wearing remains a challenge despite the implementation of various regulations. This study aims to design and develop an automatic mask-wearing detection system by leveraging the YOLOv11 algorithm, which is renowned for its superior speed and accuracy in object detection. The methodology involved collecting a dataset of facial images with and without masks, data labeling, model training using YOLOv11, and evaluating the system's performance in real-world conditions. Test results demonstrate that the system can perform real-time mask detection with a mean Average Precision (mAP) of 0.9, establishing it as an effective solution for supporting health protocol monitoring in medical facilities. Consequently, this system not only enhances monitoring efficiency but also has the potential to minimize the risk of infection spread through an intelligent technological approach.

References

N. F. Abdul Hassan, A. A. Abed, and T. Y. Abdalla, “Face mask detection using deep learning on NVIDIA Jetson Nano,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5427–5434, 2022, doi: 10.11591/ijece.v12i5.pp5427-5434.

Nena Ayu Sabrina, Yuliska Uswatun Hasanah, and Meilina Hafifah, “Efektivitas Penggunaan Masker dalam Mencegah Penyebaran Infeksi Saluran Pernapasan Atas di Lingkungan Sekolah,” J. Vent., vol. 2, no. 2, pp. 36–44, Jun. 2024, doi: 10.59680/ventilator.v2i2.1160.

S. Balovsyak, O. Derevyanchuk, V. Kovalchuk, H. Kravchenko, and M. Kozhoka, “Face Mask Recognition by the Viola-Jones Method Using Fuzzy Logic,” Int. J. Image Graph. Signal Process., vol. 16, no. 3, pp. 39–51, 2024, doi: 10.5815/ijigsp.2024.03.04.

L. B. Adrianto, M. I. Wahyuddin, and W. Winarsih, “Implementasi Deep Learning untuk Sistem Keamanan Data Pribadi Menggunakan Pengenalan Wajah dengan Metode Eigenface Berbasis Android,” J. JTIK J. Teknol. Inf. Dan Komun., vol. 4, no. 2, p. 89, Jan. 2021, doi: 10.35870/jtik.v5i1.201.

P. Nagrath, R. Jain, A. Madan, R. Arora, and P. Kataria, “SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2,” Sustain. Cities Soc., no. January, 2021.

A. Chavda, J. Dsouza, S. Badgujar, and A. Damani, “Multi-Stage CNN Architecture for Face Mask Detection,” 2021 6th Int. Conf. Converg. Technol. I2CT 2021, 2021, doi: 10.1109/I2CT51068.2021.9418207.

P. R. Togatorop and A. Fauzi, “Klasifikasi Penggunaan Masker Wajah Menggunakan Squeezenet,” JATISI J. Tek. Inform. Dan Sist. Inf., vol. 9, no. 1, pp. 397–406, 2022, doi: 10.35957/jatisi.v9i1.642.

P. Nyoman and Putu Kusuma Negara, “Deteksi Masker Pencegahan Covid19 Menggunakan Convolutional Neural Network Berbasis Android,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 3, pp. 576–583, 2021, doi: 10.29207/resti.v5i3.3103.

R. A. A. Ramdhani Reza Rizqi, Adam Riza Ibnu, “Deep Learning Implementation For Face Mask Detection,” J. Inf. Technol. Comput. Sci. INTECOMS, vol. 4, no. 2, 2021.

T. Arifianto, “Penerapan Algoritma Viola-Jones Untuk Deteksi Masker Covid-19 Di Politeknik Perkeretaapian Indonesia Madiun,” JATISI J. Tek. Inform. Dan Sist. Inf., vol. 8, no. 4, pp. 2030–2040, 2021, doi: 10.35957/jatisi.v8i4.1106.

F. Luthfillah Ahmad, A. Nugroho, and dan Alfa Faridh Suni, “Deteksi Pemakai Masker Menggunakan Metode Haar Cascade Sebagai Pencegahaan COVID 19,” Edu Elektr. J., vol. 10, no. 1, pp. 13–18, 2021.

C.-D. Politeknik and P. Indonesia, “Penerapan Algoritma Viola-Jones Untuk Deteksi Masker,” J. Tek. Inform. Dan Sist. Inf., vol. 8, no. 4, pp. 2030–2040, 2021.

R. P. M. D. Labib, S. Hadi, and P. D. Widayaka, “Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method,” MATRIK J. Manaj. Tek. Inform. Dan Rekayasa Komput., vol. 21, no. 1, pp. 21–30, 2021, doi: 10.30812/matrik.v21i1.1187.

G. Aprilian Anarki, K. Auliasari, and M. Orisa, “Penerapan Metode Haar Cascade Pada Aplikasi Deteksi Masker,” JATI J. Mhs. Tek. Inform., vol. 5, no. 1, pp. 179–186, 2021, doi: 10.36040/jati.v5i1.3214.

A. Thariq and R. Y. Bakti, “Sistem Deteksi Masker dengan Metode Haar Cascade pada Era New Normal COVID-19,” J. Sist. Dan Teknol. Inf., vol. 9, no. 2, pp. 241–244, 2021, doi: 10.26418/justin.v9i2.44309.

M. Ulum, M. Imaduddin, H. Sukri, and A. F. Ibadillah, “Deteksi Suhu Tubuh Dan Masker Otomatis Dengan Metode Haar Casecade Sebagai Solusi Pencegahan Penularan Covid-19,” J. Ris. Rekayasa Elektro, vol. 3, no. 2, pp. 119–126, 2021.

S. Singh, U. Ahuja, M. Kumar, K. Kumar, and M. Sachdeva, “Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment,” Multimed. Tools Appl., vol. 80, no. 13, pp. 19753–19768, 2021, doi: 10.1007/s11042-021-10711-8.

G. Jignesh Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Face Mask Detection Using Transfer Learning of InceptionV3,” Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma., vol. 12581 LNCS, pp. 81–90, 2020, doi: 10.1007/978-3-030-66665-1_6.

Z. Han, H. Huang, Q. Fan, Y. Li, Y. Li, and X. Chen, “SMD-YOLO: An efficient and lightweight detection method for mask wearing status during the COVID-19 pandemic,” Comput. Methods Programs Biomed., vol. 221, 2022, doi: 10.1016/j.cmpb.2022.106888.

R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” Oct. 23, 2024, arXiv: arXiv:2410.17725. doi: 10.48550/arXiv.2410.17725.

C. Dewi and H. J. Christanto, “Automatic medical face mask recognition for COVID-19 Mitigation: Utilizing YOLO V5 object detection,” Rev. Intell. Artif., vol. 37, no. 3, pp. 627–638, 2023, doi: 10.18280/ria.370312.

Y. Xie, Z. Hu, and J. Yu, “Face Mask Wearing Detection Based on YOLOv5,” Int. J. Adv. Netw. Monit. Controls, vol. 7, no. 2, pp. 67–75, Jan. 2022, doi: 10.2478/ijanmc-2022-0017.

S. Xu, Z. Guo, Y. Liu, J. Fan, and X. Liu, “An Improved Lightweight YOLOv5 Model Based on Attention Mechanism for Face Mask Detection,” Sep. 11, 2022, arXiv: arXiv:2203.16506. doi: 10.48550/arXiv.2203.16506.

C.-W. Yang, T.-H. Phung, H.-H. Shuai, and W.-H. Cheng, “Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency Representation Learning,” Oct. 01, 2021, arXiv: arXiv:2110.00523. doi: 10.48550/arXiv.2110.00523.

M. AlTamimi and F. Mohammed Ali, “Face mask detection based on algorithm YOLOv5s,” Int. J. Nonlinear Anal. Appl., no. Online First, Aug. 2022, doi: 10.22075/ijnaa.2022.28178.3824.

N. Kowalczyk and J. Rumiński, “Mask Detection and Classification in Thermal Face Images,” IEEE Access, vol. 11, pp. 43349–43359, 2023, doi: 10.1109/ACCESS.2023.3272214.

X. Fan and M. Jiang, “RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control of the COVID-19 Pandemic,” Dec. 15, 2021, arXiv: arXiv:2005.03950. doi: 10.48550/arXiv.2005.03950.

C. Dewi and H. J. Christanto, “Automatic Medical Face Mask Recognition for COVID-19 Mitigation: Utilizing YOLO V5 Object Detection,” Rev. Intell. Artif., vol. 37, no. 3, pp. 627–638, Jun. 2023, doi: 10.18280/ria.370312.

I. S. Walia, D. Kumar, K. Sharma, J. D. Hemanth, and D. E. Popescu, “An Integrated Approach for Monitoring Social Distancing and Face Mask Detection Using Stacked ResNet-50 and YOLOv5,” Electronics, vol. 10, no. 23, p. 2996, Dec. 2021, doi: 10.3390/electronics10232996.

J. Atrey, R. Regunathan, and R. Rajasekaran, “Real-world application of face mask detection system using YOLOv6,” Int. J. Crit. Infrastruct., vol. 20, no. 3, pp. 216–240, Jan. 2024, doi: 10.1504/IJCIS.2024.138785.

C. Dewi and H. J. Christanto, “Automatic Medical Face Mask Recognition for COVID-19 Mitigation: Utilizing YOLO V5 Object Detection,” Rev. Intell. Artif., vol. 37, no. 3, pp. 627–638, Jun. 2023, doi: 10.18280/ria.370312.

G. Oreski, “YOLO*C — Adding context improves YOLO performance,” Neurocomputing, vol. 555, p. 126655, Oct. 2023, doi: 10.1016/j.neucom.2023.126655.

Y. Cui, D. Guo, H. Yuan, H. Gu, and H. Tang, “Enhanced YOLO Network for Improving the Efficiency of Traffic Sign Detection,” Appl. Sci., vol. 14, no. 2, p. 555, Jan. 2024, doi: 10.3390/app14020555.

J. Redmon and A. Farhadi, “Advancements in YOLO Object Detection for Real-World Applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 6, pp. 1254–1265, 2023.

D. Chicco and G. Jurman, “The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, 2020.

Downloads

Published

2025-09-25