ENHANCING PHOTOVOLTAIC PERFORMANCE USING TITANIUM DIOXIDE BASED NANO-ENHANCED PCM FOR PASSIVE COOLING APPLICATIONS

Authors

  • Dewandono Bayu Seto Politeknik Indonusa Surakarta
  • Sudiro Politeknik Indonusa Surakarta
  • Tuhu Restu Politeknik Indonusa Surakarta

DOI:

https://doi.org/10.47701/gjjms246

Keywords:

Photovoltaic, Passive Cooling, PCM, NePCM, Titanium Dioxide

Abstract

The performance of photovoltaic (PV) modules is significantly affected by the increase in operating temperature, which leads to reduced power output and overall efficiency. Therefore, passive cooling strategies are required to maintain stable energy conversion in solar systems. One widely investigated approach is the use of phase change materials (PCM) due to their ability to absorb and release latent heat, although their low thermal conductivity remains a major limitation. This study aims to evaluate the effectiveness of incorporating titanium dioxide nanoparticles into PCM, known as nano-enhanced PCM (NePCM), in improving the cooling performance of PV modules. The experimental method was conducted on a 50 Wp polycrystalline PV module under three conditions: without cooling, with pure PCM, and with titanium dioxide-based NePCM. The preparation of NePCM was carried out using a two-step method involving mechanical stirring and ultrasonic sonication to achieve a homogeneous nanoparticle dispersion. The results demonstrated that the addition of titanium dioxide improved the thermal conductivity of PCM, leading to lower operating temperatures, more stable voltage and power output, and higher energy conversion efficiency compared to both pure PCM and the uncontrolled condition. These findings highlight the potential of titanium dioxide-based NePCM as an effective, economical, and sustainable material for passive cooling applications in photovoltaic systems.

References

Adjiski, V., Kaplan, G., & Mijalkovski, S. (2023). Assessment of the Solar Energy Potential of Rooftops Using LiDAR Datasets and GIS Based Approach. International Journal of Engineering and Geosciences, 8(2), 188–199. https://doi.org/10.26833/ijeg.1112274

Afif, F., & Martin, A. (2022). Tinjauan Potensi Dan Kebijakan Energi Surya Di Indonesia. Jurnal Engine Energi Manufaktur Dan Material, 6(1), 43. https://doi.org/10.30588/jeemm.v6i1.997

Alktranee, M., & Bencs, P. (2023). Experimental comparative study on using different cooling techniques with photovoltaic modules. Journal of Thermal Analysis and Calorimetry, 148(9), 3805–3817. https://doi.org/10.1007/s10973-022-11940-1

Alotaibi, M. R., Alsuhybani, M., Khayyat, M. M., & AlOtaibi, B. (2022). Performance of Nanocomposites of a Phase Change Material Formed by the Dispersion of MWCNT/TiO2 for Thermal Energy Storage Applications. Materials, 15(9), 3063. https://doi.org/10.3390/ma15093063

Bukar, A. M., Almerbati, A., Shuja, S. Z., & Zubair, S. M. (2025). Enhancing solar PV panel performance through active and passive cooling techniques: A comprehensive review. Renewable and Sustainable Energy Reviews, 216, 115611. https://doi.org/https://doi.org/10.1016/j.rser.2025.115611

Hudişteanu, S. V., Cherecheş, N.-C., Țurcanu, F.-E., Hudișteanu, I., & Romila, C. (2024). Impact of Temperature on the Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels: A Comprehensive Experimental Analysis for Sustainable Energy Solutions. Sustainability, 16(23), 10566. https://doi.org/10.3390/su162310566

Ibrahim, T., Akrouch, M. A., Hachem, F., Ramadan, M., Ramadan, H. S., & Khaled, M. (2024). Cooling Techniques for Enhanced Efficiency of Photovoltaic Panels—Comparative Analysis With Environmental and Economic Insights. Energies, 17(3), 713. https://doi.org/10.3390/en17030713

Jenima, J., Dharshini, M., Ajin, M., Moses, J. J., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., & Muñoz, R. F. A. (2024). A Comprehensive Review of Titanium Dioxide Nanoparticles in Cementitious Composites. Heliyon, 10(20), e39238. https://doi.org/10.1016/j.heliyon.2024.e39238

Laksana, E. P., SANJAYA, O., SUJONO, S., BROTO, S., & FATH, N. (2022). Sistem Pendinginan Panel Surya Dengan Metode Penyemprotan Air Dan Pengontrolan Suhu Air Menggunakan Peltier. Elkomika Jurnal Teknik Energi Elektrik Teknik Telekomunikasi & Teknik Elektronika, 10(3), 652. https://doi.org/10.26760/elkomika.v10i3.652

Mebarek‐Oudina, F., & Chabani, I. (2023). Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies, 16(3), 1066. https://doi.org/10.3390/en16031066

Muhammad Fuad Abdul Hakim, O. N. (2025). JIIF ( Jurnal Ilmu dan Inovasi Fisika ) EFFECT OF THERMOELECTRICS AS A COOLING SYSTEM ON PHOTOVOLTAIC EFFICIENCY AND ECONOMIC ANALYSIS. 09(01), 56–63.

Pomares-Hernández, C., Zuluaga-García, E. A., Escorcia-Salas, G. E., Robles-Algarín, C., & Sierra‐Ortega, J. (2021). Computational Modeling of Passive and Active Cooling Methods to Improve PV Panels Efficiency. Applied Sciences, 11(23), 11370. https://doi.org/10.3390/app112311370

Prayogi, S., Silviana, F., & Zainuddin, Z. (2023). Peningkatan Performa Sel Surya Dengan Sistem Peredam Panas. Jambura Journal of Electrical and Electronics Engineering, 5(2), 143–147. https://doi.org/10.37905/jjeee.v5i2.18802

Seto, D. B., Arifin, Z., Kristiawan, B., & Prasetyo, S. D. (2024). Nanoparticle-Enhanced Phase Change Materials (NePCM) in Passive Cooling Systems to Improve Solar Panel Efficiency. International Review of Mechanical Engineering (Ireme), 18(1), 20. https://doi.org/10.15866/ireme.v18i1.24149

Unnıkrıshnan, K. S., & Rohinikumar, B. (2022). Thermal Management of Photovoltaic Panel With Nano-Enhanced Phase Change Material at Different Inclinations. Environmental Science and Pollution Research, 29(23), 34759–34775. https://doi.org/10.1007/s11356-021-18075-0

Downloads

Published

2025-09-25